Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems
نویسندگان
چکیده
Invariant pairs have been proposed as a numerically robust means to represent and compute several eigenvalues along with the corresponding (generalized) eigenvectors for matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. In this work, we consider nonlinear eigenvalue problems that depend on an additional parameter and our interest is to track several eigenvalues as this parameter varies. Based on the concept of invariant pairs, a theoretically sound and reliable numerical continuation procedure is developed. Particular attention is paid to the situation when the procedure approaches a singularity, that is, when eigenvalues included in the invariant pair collide with other eigenvalues. For the real generic case, it is proven that such a singularity only occurs when two eigenvalues collide on the real axis. It is shown how this situation can be handled numerically by an appropriate expansion of the invariant pair. A numerical example demonstrates the viability of our continuation procedure.
منابع مشابه
Continuation of Invariant Subspaces for Parameterized Quadratic Eigenvalue Problems
We consider quadratic eigenvalue problems with large and sparse matrices depending on a parameter. Problems of this type occur, for example, in the stability analysis of spatially discretized and parameterized nonlinear wave equations. The aim of the paper is to present and analyze a continuation method for invariant subspaces that belong to a group of eigenvalues the number of which is much sm...
متن کاملA block Newton method for nonlinear eigenvalue problems
We consider matrix eigenvalue problems that are nonlinear in the eigenvalue parameter. One of the most fundamental differences to the linear case is that distinct eigenvalues may have linearly dependent eigenvectors or even share the same eigenvector. This has been a severe hindrance in the development of general numerical schemes for computing several eigenvalues of a nonlinear eigenvalue prob...
متن کاملNonlinear Eigenvalue Problems
Heinrich Voss Hamburg University of Technology 115.1 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115-2 115.2 Analytic matrix functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115-3 115.3 Variational Characterization of Eigenvalues . . . . . . . . 115-7 115.4 General Rayleigh Functionals . . . . . . . . . . . . . . . . . . . ...
متن کاملIterative Methods for Large Continuation Problems
The computation of solution paths for continuation problems requires the solution of a sequence of nonlinear systems of equations. Each nonlinear system can be solved by computing the solution of a succession of linear systems of equations determined by Jacobian matrices associated with the nonlinear system of equations. Points on the solution path where the Jacobian matrix is singular are refe...
متن کاملComputing a Partial Schur Factorization of Nonlinear Eigenvalue Problems Using the Infinite Arnoldi Method
The partial Schur factorization can be used to represent several eigenpairs of a matrix in a numerically robust way. Different adaptions of the Arnoldi method are often used to compute partial Schur factorizations. We propose here a technique to compute a partial Schur factorization of a nonlinear eigenvalue problem (NEP). The technique is inspired by the algorithm in [8], now called the infini...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Numerische Mathematik
دوره 119 شماره
صفحات -
تاریخ انتشار 2011